Über die Interpolationsaufgabe bei natürlichen Polynom-Splines mit äquidistanten Knoten

GERHARD MERZ

Institut für Angewandte Mathematik I der Universität, 852 Erlangen, Germany

Communicated by G. Meinardus

1. EINLEITUNG

Gegeben seien n + 1 reelle Zahlen

$$x_0 < x_1 < x_2 < \dots < x_n \,. \tag{1}$$

Unter einem natürlichen Polynom-Spline vom Grad 2k + 1 versteht man eine über dem Intervall $(-\infty, +\infty)$ definierte Funktion s(x), die folgenden Bedingungen genügt:

- (i) In jedem Intervall (x_i, x_{i+1}) , i = 0(1)n 1, stimmt s(x) mit einem Polynom $p_i(x)$ höchstens (2k + 1)-ten Grades überein;
- (ii) für $x < x_0$ bzw. $x > x_n$ stimmt s(x) jeweils mit einem Polynom höchstens k-ten Grades überein;
- (iii) s(x) besitzt über $(-\infty, +\infty)$ stetige Ableitungen bis zur Ordnung 2k.

Die Klasse der natürlichen Polynom-Splines vom Grad 2k+1 mit den Knoten (1) bezeichnen wir mit $S_{2k+1}(x_0, x_1, ..., x_n)$. Die Aufgabe, zu vorgegebenen Wertepaaren (x_i, y_i) , i = 0(1)n, eine Funktion $s(x) \in S_{2k+1}(x_0, x_1, ..., x_n)$ zu konstruieren, die die Interpolationsbedingungen

$$s(x_i) = y_i, i = 0(1)n,$$
 (2)

erfüllt, ist für $1 \le k \le n$ eindeutig lösbar [1, S. 165]. Zur Konstruktion der Interpolationssplines sind i.a. k lineare Gleichungssysteme der Ordnung n-1 zu lösen [1, S. 109 ff.]. Wir zeigen, daß in dem auch für die Anwendungen wichtigen Fall äquidistanter Knoten der Rechenaufwand erheblich verringert werden kann: Unter Verwendung erzeugender Funktionen ist bei beliebiger Knotenzahl nur ein lineares Gleichungssystem der Ordnung k

aufzulösen, während sich die übrigen Größen aus einer linearen Rekursion ergeben. Ein entsprechendes Verfahren für den Fall k=1 hat Greville [3] angegeben.

2. Erzeugende Funktionen

Wir gehen aus von den für m = 0, 1, 2,... mit einer Variablen t, |t| < 1, definierten Funktionen

$$\theta_m(t) = \sum_{\rho=0}^{\infty} (1+\rho)^m t^{\rho}. \tag{3}$$

Sie sind alle rational, denn zunächst ist

$$\theta_0(t) = 1/(1-t)$$

und ferner gilt für m = 0, 1, 2,...

$$\theta_{m+1}(t) = (d/dt)(t\theta_m(t)). \tag{4}$$

Nun setzen wir

$$\theta_m(t) = q_m(t)/(1-t)^{m+1}$$

und zeigen, daß $q_m(t)$ ein Polynom in t ist. Aus (4) folgt nämlich für m=0,1,2,... die Rekursionsformel

$$q_{m+1}(t) = t(1-t) q_m'(t) + (1+mt) q_m(t).$$
 (5)

Zum Beweis der Behauptung ist jetzt nur noch $q_0(t) = 1$ zu beachten. Aus (5) ergibt sich für m = 1, 2,... noch

Grad
$$q_m(t) = m - 1$$
.

Für die ersten Polynome $q_m(t)$ erhält man

$$q_0(t) = 1$$

$$q_1(t) = 1$$

$$q_2(t) = 1 + t$$

$$q_3(t) = 1 + 4t + t^2$$

$$q_4(t) = 1 + 11t + 11t^2 + t^3$$

$$q_5(t) = 1 + 26t + 66t^2 + 26t^3 + t^4$$

Alle Polynome $q_m(t)$ besitzen für $m \ge 1$ die Symmetrieeigenschaft

$$t^{m-1}q_m(1/t) = q_m(t)$$
.

Dies kann etwa aus (5) abgeleitet werden.

Mit den Funktionen $\theta_m(t)$ bilden wir jetzt die beiden Matrizen

$$A = (\theta_{\mu}(t) \; \theta_{\nu}(t)/\theta_{2k+1}(t)), \qquad \mu, \nu = 1(1)k,$$

sowie für $n \ge k$

$$B_{k,n} = \left(\frac{1}{(n-1)!} \frac{d^{n-1}}{dt^{n-1}} \frac{\theta_{\mu}(t) \theta_{\nu}(t)}{\theta_{2k+1}(t)}\right)_{t=0}, \quad \mu, \nu = 1(1) k.$$

A ist für $k \ge 2$ singulär. Aus der Existenz und Eindeutigkeit der Lösung des Interpolationsproblems (2) werden wir später schließen, daß $B_{k,n}$ für $n \ge k$ nicht singulär ist. Im Fall k = 1 kann dies auch direkt gezeigt werden. Hier gilt

$$B_{1,n} = \frac{1}{(n-1)!} \frac{d^{n-1}}{dt^{n-1}} \frac{\theta_1^2(t)}{\theta_3(t)_{t=0}} = \frac{1}{(n-1)!} \frac{d^{n-1}}{dt^{n-1}} \frac{1}{1+4t+t_{t=0}^2}.$$

Mit $\omega = 3^{1/2} - 2$ wird

$$\frac{1}{1+4t+t^2} = \frac{1}{2(3)^{1/2}} \left(\frac{\omega}{1-\omega t} - \frac{\omega^{-1}}{1-\omega^{-1}t} \right)$$
$$= \frac{1}{2(3)^{1/2}} \sum_{\rho=0}^{\infty} \left(\omega^{\rho+1} - \omega^{-\rho-1} \right) t^{\rho},$$

woraus für $n \ge 1$

$$B_{1,n} = (1/2(3)^{1/2}) \qquad (\omega^n - \omega^{-n}) \neq 0$$

folgt.

Die Elemente der Matrix B_{k_1n} lassen sich auf einfache Weise rekursiv berechnen. Wir verwenden hierzu die in einer Umgebung des Nullpunkts konvergente Potenzreihe

$$\frac{\theta_{\mu}(t)\,\theta_{\nu}(t)}{\theta_{2k+1}(t)} = \sum_{\rho=0}^{\infty} \gamma_{\rho} t^{\rho}.\tag{6}$$

Mit den Polynomen $q_m(t)$ folgt aus (6)

$$(1-t)^{2k-\mu-\nu} q_{\nu}(t) q_{\nu}(t) = q_{2k+1}(t) \sum_{n=0}^{\infty} \gamma_{n} t^{n}.$$
 (7)

Mit

$$q_{2k+1}(t) = \sum_{\rho=0}^{2k} \beta_{\rho} t^{\rho}$$

wird

$$q_{2k+1}(t)\sum_{\rho=0}^{\infty}\gamma_{\rho}t^{\rho}=\sum_{\lambda=0}^{\infty}t^{\lambda}\sum_{\rho=0}^{\min(\lambda,2k)}\beta_{\rho}\gamma_{\lambda-\rho}$$

und damit folgt für $\lambda \geqslant 2k$ unter Beachtung von $\beta_0 = \beta_{2k} = 1$

$$\gamma_{\lambda} + \beta_1 \gamma_{\lambda-1} + \beta_2 \gamma_{\lambda-2} + \dots + \gamma_{\lambda-2k} = 0, \tag{8}$$

während sich für $\lambda < 2k$ die Werte von γ_0 , γ_1 ,..., γ_{2k-1} direkt durch Koeffizientenvergleich in (7) ergeben.

Der Anfang einer Tabelle der Produkte $q_{\mu}(t) q_{\nu}(t)$ sieht folgendermaßen aus:

ν^{μ}	1	2	3	4
1	1	$\frac{1}{1+t}$	$\frac{1+4t+t^2}{1+4t+t^2}$	$1+11t+11t^2+t^3$
2		$\frac{1}{1+2t+t^2}$	$1+5t+5t^2+t^3$	$1+12t+22t^2+12t^3+t^4$
3	'		$\frac{1+8t+18t^2+8t^3+t^4}{1+8t+18t^2+8t^3+t^4}$	$1 + 15t + 56t^2 + 56t^3 + 15t^4 + t^5$
4				$\frac{1+22t+143t^2+244t^3+143t^4+22t^5+t^6}{1+22t+143t^2+244t^3+143t^4+22t^5+t^6}$

Wir benötigen später auch die Koeffizienten der Potenzreihenentwicklung der Funktionen

$$\theta_{\mu}(t)/\theta_{2k+1}(t), \qquad \mu = 1(1)k,$$

um t=0, die ebenfalls einer Rekursionsformel der Form (8) genügen; allerdings muß hier $\lambda \ge 2k+1$ vorausgesetzt werden.

3. BERECHNUNG DER INTERPOLIERENDEN SPLINE-FUNKTION

Wir setzen ohne Einschränkung der Allgemeinheit voraus, daß die Knoten in (1) durch $x_i = i$, i = 0(1)n, gegeben sind. Dann besitzt die eindeutig

bestimmte interpolierende natürliche Spline-Funktion die Darstellung [2, S. 58]

$$s(x) = y_0 + \sum_{\nu=1}^k \alpha_{\nu} x^{\nu} + \sum_{\rho=0}^n s_{\rho} (x - \rho)_+^{2k+1}$$
 (9)

mit

$$x_+^{2k+1} = \begin{cases} 0 & \text{für } x \leq 0 \\ x^{2k+1} & \text{für } x \geq 0. \end{cases}$$

Da s(x) für $x \ge n$ ein Polynom höchstens k-ten Grades ist, folgt das Bestehen der k+1 Gleichungen

$$\sum_{\rho=0}^{n} s_{\rho} = \sum_{\rho=1}^{n} \rho s_{\rho} = \dots = \sum_{\rho=1}^{n} \rho^{k} s_{\rho} = 0.$$
 (10)

Die Zahlen s_{ρ} lassen sich rekursiv aus den α_{ν} berechnen. Wegen der Interpolationsbedingung (2) folgt nämlich aus (9) zunächst für x = 1

$$s_0 = y_1 - y_0 - \sum_{\nu=1}^k \alpha_{\nu} \tag{11}$$

und weiter für x = m + 1, m = 1(1)n - 1,

$$s_m = y_{m+1} - y_0 - \sum_{\nu=1}^k \alpha_{\nu}(m+1)^{\nu} - \sum_{\rho=0}^{m-1} s_{\rho}(m+1-\rho)^{2k+1}.$$
 (12)

 s_n ermittelt man schließlich aus einer der Gleichungen (10). Zur Berechnung der α_{ν} , $\nu=1(1)k$, verwenden wir die unter 2. eingeführten erzeugenden Funktionen. Mit der Variablen t, |t|<1, sei

$$\sigma(t) = \sum_{\rho=0}^{n} s_{\rho} t^{\rho}$$

und

$$\eta(t) = \sum_{\lambda=0}^{\infty} \left[s(\lambda+1) - s(0) \right] t^{\lambda}.$$

Mit (9) folgt dann wegen

$$\sum_{\lambda=0}^{\infty} \sum_{\rho=0}^{n} s_{\rho}(\lambda+1-\rho)_{+}^{2k+1} t^{\lambda} = \sum_{\rho=0}^{n} s_{\rho} \sum_{\lambda=0}^{\infty} (\lambda+1-\rho)_{+}^{2k+1} t^{\lambda}$$

$$= \sum_{\rho=0}^{n} s_{\rho} t^{\rho} \sum_{\kappa=0}^{\infty} (\kappa+1)^{2k+1} t^{\kappa} = \sigma(t) \theta_{2k+1}(t)$$

die für |t| < 1 gültige Identität

$$\eta(t) = \sum_{\nu=1}^{k} \alpha_{\nu} \theta_{\nu}(t) + \sigma(t) \theta_{2k+1}(t),$$

d.h. wir erhalten für $\mu = 1(1)k$

$$\eta(t) \frac{\theta_{\mu}(t)}{\theta_{2k+1}(t)} = \sum_{\nu=1}^{k} \alpha_{\nu} \frac{\theta_{\mu}(t) \theta_{\nu}(t)}{\theta_{2k+1}(t)} + \sigma(t) \theta_{\mu}(t). \tag{13}$$

Nun ist

$$\sigma(t) \theta_{\mu}(t) = \sum_{\rho=0}^{n} s_{\rho} t^{\rho} \sum_{\lambda=0}^{\infty} (\lambda + 1)^{\mu} t^{\lambda}$$
$$= \sum_{\kappa=0}^{\infty} t^{\kappa} \sum_{\rho=0}^{n} s_{\rho} (\kappa + 1 - \rho)_{+}^{\mu}$$

und der Koeffizient von t^{n-1} in dieser Potenzreihenentwicklung verschwindet wegen (10) für $\mu=1(1)k$. Damit können wir für $\mu=1(1)k$ in (13) einen Koeffizientenvergleich bei t^{n-1} durchführen und erhalten für die Zahlen α_{ν} , $\nu=1(1)k$, ein lineares Gleichungssystem mit der Matrix $B_{k,n}$ und bekannter rechter Seite. Wegen der eindeutigen Lösbarkeit der Interpolationsaufgabe kann $B_{k,n}$ nicht singulär sein.

4. Spezialfall
$$k = 2$$
 (Quintic Splines)

Zur Illustration soll der Fall k=2 ausführlich diskutiert werden. Wir benötigen hier die Potenzreihenentwicklungen der Funktionen

$$\frac{\theta_1(t)}{\theta_5(t)}, \frac{\theta_2(t)}{\theta_5(t)}, \frac{\theta_1^2(t)}{\theta_5(t)}, \frac{\theta_1(t)}{\theta_5(t)}, \frac{\theta_1(t)}{\theta_5(t)}, \frac{\theta_2^2(t)}{\theta_5(t)} \,.$$

Es ist

$$\frac{\theta_1(t)}{\theta_5(t)} = \frac{(1-t)^4}{q_5(t)} = \sum_{\rho=0}^{\infty} a_{\rho} t^{\rho} = 1 - 30t + 720t^2 - 16770t^3 + 389280t^4...,$$

$$\frac{\theta_2(t)}{\theta_5(t)} = \frac{(1+t)(1-t)^3}{q_5(t)} = \sum_{\rho=0}^{\infty} b_{\rho} t^{\rho} = 1 - 28t + 662t^2 - 15388t^3 + 357122t^4...,$$

$$\frac{\theta_1^2(t)}{\theta_5(t)} = \frac{(1-t)^2}{q_5(t)} = \sum_{\rho=0}^{\infty} c_{\rho} t^{\rho} = 1 - 28t + 663t^2 - 15416t^3 + 357785t^4....$$

$$\frac{\theta_1(t)\,\theta_2(t)}{\theta_5(t)} = \frac{1-t^2}{q_5(t)} = \sum_{\rho=0}^{\infty} d_{\rho}t^{\rho} = 1 - 26t + 609t^2 - 14144t^3 + 328225t^4...,$$

$$\frac{\theta_2^2(t)}{\theta_5(t)} = \frac{(1+t)^2}{q_5(t)} = \sum_{\rho=0}^{\infty} e_{\rho}t^{\rho} = 1 - 24t + 559t^2 - 12976t^3 + 301105t^4....$$

Die Koeffizienten a_{ρ} genügen für $\rho \geqslant 5$ der Rekursionsformel (vgl. (8))

$$a_0 + 26a_{0-1} + 66a_{0-2} + 26a_{0-3} + a_{0-4} = 0$$

mit den Anfangswerten

$$a_1 = -30$$
, $a_2 = 720$, $a_3 = -16770$, $a_4 = 389280$.

Dieselbe Rekursionsformel erfüllen die b_{ρ} für $\rho \geqslant 5$. Die Anfangswerte lauten jetzt

$$b_1 = -28$$
, $b_2 = 662$, $b_3 = -15388$, $b_4 = 357122$.

Für die c_{ρ} , d_{ρ} und e_{ρ} ist die gleiche Rekursionsformel schon für $\rho \geqslant 4$ erfüllt. Die Anfangswerte sind

$$c_0 = 1$$
, $c_1 = -28$, $c_2 = 663$, $c_3 = -15416$
 $d_0 = 1$, $d_1 = -26$, $d_2 = 609$, $d_3 = -14144$
 $e_0 = 1$, $e_1 = -24$, $e_2 = 559$, $e_3 = -12976$.

Das lineare Gleichungssystem für α_1 und α_2 lautet

$$c_{n-1}\alpha_1 + d_{n-1}\alpha_2 = \sum_{\rho=0}^{n-1} a_{\rho}(y_{n-\rho} - y_0)$$

$$d_{n-1}\alpha_1 + e_{n-1}\alpha_2 = \sum_{\rho=0}^{n-1} b_{\rho}(y_{n-\rho} - y_0).$$
(14)

5. Beispiel

Sei
$$k=2$$
, $n=3$ und $y_0=3$, $y_1=-1$, $y_2=7$, $y_3=4$. Dann wird
$$\sum_{\rho=0}^{2} a_{\rho}(y_{n-\rho}-y_0)=-2999$$

$$\sum_{\rho=0}^{2} b_{\rho}(y_{n-\rho}-y_0)=-2759$$

und wir erhalten aus (14) die Gleichungen

$$663\alpha_1 + 609\alpha_2 = -2999$$

$$609\alpha_1 + 559\alpha_2 = -2759$$
.

Hieraus ergibt sich

$$\alpha_1 = -1895/132, \quad \alpha_2 = 471/44$$

und mit (10), (11), (12) folgt aus (9)

$$s(x) = 3 - \frac{1895}{132}x + \frac{471}{44}x^2 - \frac{23}{66}x_+^5 + \frac{23}{22}(x-1)_+^5 - \frac{23}{22}(x-2)_+^5 + \frac{23}{66}(x-3)_+^5.$$

6. Bemerkungen

- (i) Daß $B_{k,n}$ nicht singulär ist, kann in jedem Spezialfall direkt bestätigt werden. Man erhält damit jeweils gleichzeitig einen konstruktiven Existenzund Eindeutigkeitsbeweis für das gestellte Problem. Für den Fall k=2 sei hier auf [4] verwiesen.
- (ii) Für k=1 kann die angegebene Methode zur Berechnung der Norm des Interpolationsoperators verwendet werden. Bei besserer Beherrschung der Matrix $B_{k,n}$ wäre dies auch im Fall $k \ge 2$ möglich. Offenbar spielen die Nullstellen des Polynoms $q_5(t)$ hier eine entscheidende Rolle.
- (iii) Eine ähnliche Methode kann für periodische Splines entwickelt werden. An die Stelle von (10) treten dann Summen über *n*-te Einheitswurzeln.

LITERATUR

- J. H. Ahlberg, E. N. Nilsson, and J. L. Walsh, "The Theory of Splines and Their Applications," Academic Press, New York, 1967.
- T. N. E. Greville, Numerical procedures for interpolation by spline functions, SIAM J. Numer. Anal. 1 (1964), 53-68.
- T. N. E. Greville, Table for third-degree spline interpolation with equally spaced arguments, Math. Comput. 24 (1970), 179-183.
- 4. G. MERZ, Über die Berechnung von natürlichen interpolierenden Polynom-Splines fünften Grades mit äquidistanten Knoten, Bericht 004 aus dem Institut für Angewandte Mathematik I der Universität Erlangen, Oktober 1971.